Понятие бесконечности Зенона ЭлейскогоМатериалы / Ноль и бесконечное число / Понятие бесконечности Зенона ЭлейскогоСтраница 2
Пифагорейцы уподобляли числа геометрическим точкам: единицу - одной точке, некоторое другое число - группе точек, образующих некоторую геометрическую фигуру. Каждое число у них было дискретным набором единиц; таким образом, пифагорейская арифметика ограничивалась изучением положительных целых чисел и отношений целых чисел, которые не считались числами.
Всякая непрерывная величина - линия, поверхность, тело - могла быть отождествлена с некоторым соответствующим ей числом - “количеством”(длина, площадь, объем). Подобно тому как единица была общей мерой целых чисел, величины должны были иметь общую единицу измерения - быть соизмеримыми - и каждая величина отождествлялась с целым числом составляющих ее единиц.
Эта попытка отождествить целые числа с непрерывными величинами, интерпретировать непрерывное в терминах дискретного ни к чему не привела и быстро провалилась. Решающую роль, как уже говорилось, в этом сыграло открытие иррациональных чисел. В квадрате со стороной 1 отношение диагонали к стороне равно

Именно в связи с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности. В своих поисках общей единицы измерения для всех величин греческие геометры могли бы рассмотреть бесконечно делимые величины, но идея бесконечности приводила их в глубокое смятение. Если даже рассуждения о бесконечном проходили успешно, греки в своих математических теориях всегда пытались его обойти и исключить. Их затруднения перед явным выражением абстрактных понятий бесконечного и непрерывного, противоположных понятиям конечного и дискретного, ярко проявились в парадоксах Зенона Элейского.
Доводами Зенона были “апории” (тупики); они должны были продемонстрировать, что оба предположения заводят в тупик. Эти парадоксы известны под названием Ахиллес, Стрела, Дихотомия (деление на два) и Стадион. Они сформулированы так, чтобыподчеркнуть противоречия в понятиях движения и времени, но это вовсе не попытка разрешить такие противоречия.
Апория “Ахилл и черепаха” противостоит идее бесконечной делимости пространства и времени. Быстроногий Ахилл соревнуется в беге с черепахой и благородно предоставляет ей фору. Пока он пробежит расстояние, отделяющее его от точки отправления черепахи, последняя проползет дальше; расстояние между Ахиллом и черепахой сократилось, но черепаха сохраняет преимущество. Пока Ахилл пробежит расстояние, отделяющее его от черепахи, черепаха снова проползет еще немного вперед, и т. д. Если пространство бесконечно делимо, Ахилл никогда не сможет догнать черепаху. Этот парадокс построен на трудности суммирования бесконечного числа все более малых величин и невозможности интуитивно представить себе, что эта сумма равняется конечной величине.
Смотрите также
Духовно экзистенциальное и духовно культурное время и пространство
Человеческая
личность существует в особом духовно-экзистенциальном (или биографическом)
времени — времени ее уникальных поступков и внутренних размышлений, общения с
другими людьми и творче ...
Глобальные проблемы современности
Под
глобальными проблемами человечества понимается комплекс острейших социоприродных
противоречий, затрагивающих мир в целом, а вместе с ним и отдельные регионы и
страны. Глобальные проблем ...
Наука в контексте культуры
Во всем мне хочется дойти
До самой сути.
В работе, в поисках пути,
В сердечной смуте,
До сущности протекших дней,
До их причины.
До оснований, до корней,
До сердцевины.
Все время схват ...